Extremal values on Zagreb indices of trees with given distance k-domination number

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal values on Zagreb indices of trees with given distance k-domination number

Let [Formula: see text] be a graph. A set [Formula: see text] is a distance k-dominating set of G if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text], where k is a positive integer. The distance k-domination number [Formula: see text] of G is the minimum cardinality among all distance k-dominating sets of G. The first Zagreb index of G is defined as ...

متن کامل

Chemical Trees with Extreme Values of Zagreb Indices and Coindices

We give sharp upper bounds on the Zagreb indices and lower bounds on the Zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.

متن کامل

Extremal Zagreb Indices of Graphs with a Given Number of Cut Edges

For a graph, the first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Denote by Gn,k the set of graphs with n vertices and k cut edges. In this paper, we showed the types of graphs with the largest and the second largest M1 and M2 among Gn,k .

متن کامل

Multiplicative Zagreb indices of k-trees

Let G be a graph with vetex set V (G) and edge set E(G). The first generalized multiplicative Zagreb index of G is ∏ 1,c(G) = ∏ v∈V (G) d(v) , for a real number c > 0, and the second multiplicative Zagreb index is ∏ 2(G) = ∏ uv∈E(G) d(u)d(v), where d(u), d(v) are the degrees of the vertices of u, v. The multiplicative Zagreb indices have been the focus of considerable research in computational ...

متن کامل

The extremal values of some topological indices in bipartite graphs with a given matching number

Let I(G) be a topological index of a graph. If I(G+ e) < I(G) (or I(G+ e) > I(G), respectively) for each edge e ∈ G, then I(G) decreases (or increases, respectively) with addition of edges. In this paper, we determine the extremal values of some topological indices which decrease or increase with addition of edges, and characterize the corresponding extremal graphs in bipartite graphs with a gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2018

ISSN: 1029-242X

DOI: 10.1186/s13660-017-1597-3